Math 347: Homework 5 Due on: Oct. 17, 2018

- 1. Let S be a bound subset of \mathbb{R} . Suppose that x_n and y_n are two sequences, such that $x_n \to \sup(S)$ and $y_n \to \inf(S)$. Prove that $\lim x_n + y_n \in S$.
- 2. For each set S below, find a sequence in S converging to $\sup(S)$ and a sequence converging to $\inf(S)$.
 - (i) $S = \{x \in \mathbb{R} \mid 0 \le x < 1\};$
 - (ii) $S = \{\frac{2+(-1)^n}{n} \mid n \in \mathbb{N}\}.$
- 3. Prove that the least upper bound property for \mathbb{R} holds if and only if the greaster lower bound property for \mathbb{R} holds.
- 4. Let $X_n = \frac{1}{n} + \frac{1}{n+1} + \dots + \frac{1}{2n}$. Prove that the sequence x_n converges.
- 5. The nested interval property. Let $\{I_n\}$ be a sequence of closed intervals, with I_n of length d_n , such that $I_{n+1} \subset I_n$ and $d_n \to 0$.

The *nested interval property*: for such a sequence, there is exactly one point that belongs to all I_n .

Prove the following:

- (i) the completeness axiom implies the nested interval property;
- (ii) the nested interval property implies the completeness axiom.